Experimental Analysis of Vito Volterra's Mathematical Theory of the Struggle for Existence.
نویسنده
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
Solving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملTheory of hybrid differential equations on time scales
In this paper, we develop the theory of hybrid differential equations on time scales. An existence theorem for hybrid differential equations on time scales is given under Lipschitz conditions. Some fundamental fractional differential inequalities are also established which are utilized to prove the existence of extremal solutions. Necessary tools are considered and the compa...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملFixed Point Theory in $varepsilon$-connected Orthogonal Metric Space
The existence of fixed point in orthogonal metric spaces has been initiated by Eshaghi and et. al [7]. In this paper, we prove existence and uniqueness theorem of fixed point for mappings on $varepsilon$-connected orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point for analytic function of one complex variable. The paper concludes with some i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 79 2036 شماره
صفحات -
تاریخ انتشار 2008